本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(9x + 1)}^{5}{({x}^{4} - 5)}^{6} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 59049(x^{4} - 5)^{6}x^{5} + 32805(x^{4} - 5)^{6}x^{4} + 7290(x^{4} - 5)^{6}x^{3} + 810(x^{4} - 5)^{6}x^{2} + 45(x^{4} - 5)^{6}x + (x^{4} - 5)^{6}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 59049(x^{4} - 5)^{6}x^{5} + 32805(x^{4} - 5)^{6}x^{4} + 7290(x^{4} - 5)^{6}x^{3} + 810(x^{4} - 5)^{6}x^{2} + 45(x^{4} - 5)^{6}x + (x^{4} - 5)^{6}\right)}{dx}\\=&59049(6(x^{4} - 5)^{5}(4x^{3} + 0))x^{5} + 59049(x^{4} - 5)^{6}*5x^{4} + 32805(6(x^{4} - 5)^{5}(4x^{3} + 0))x^{4} + 32805(x^{4} - 5)^{6}*4x^{3} + 7290(6(x^{4} - 5)^{5}(4x^{3} + 0))x^{3} + 7290(x^{4} - 5)^{6}*3x^{2} + 810(6(x^{4} - 5)^{5}(4x^{3} + 0))x^{2} + 810(x^{4} - 5)^{6}*2x + 45(6(x^{4} - 5)^{5}(4x^{3} + 0))x + 45(x^{4} - 5)^{6} + (6(x^{4} - 5)^{5}(4x^{3} + 0))\\=&1417176x^{28} + 787320x^{27} + 174960x^{26} + 19440x^{25} - 35428320x^{24} - 19682976x^{23} - 4374000x^{22} - 486000x^{21} + 354267000x^{20} + 196829400x^{19} + 295245(x^{4} - 5)^{6}x^{4} + 43740000x^{18} + 4860000x^{17} + 131220(x^{4} - 5)^{6}x^{3} - 1771200000x^{16} - 984144000x^{15} + 21870(x^{4} - 5)^{6}x^{2} - 24300000x^{13} - 218700000x^{14} + 4427325000x^{12} + 1620(x^{4} - 5)^{6}x + 2460345000x^{11} + 45(x^{4} - 5)^{6} + 60750000x^{9} + 546750000x^{10} - 4425300000x^{8} - 2460300000x^{7} - 546750000x^{6} - 3375000x^{4} - 60750000x^{5} - 75000x^{3}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!