本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({e}^{(\frac{xln(2 + cos(x))}{3})} - 1){\frac{1}{x}}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{3}} - \frac{1}{x^{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{3}} - \frac{1}{x^{3}}\right)}{dx}\\=&\frac{-3{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{4}} + \frac{({e}^{(\frac{1}{3}xln(cos(x) + 2))}((\frac{1}{3}ln(cos(x) + 2) + \frac{\frac{1}{3}x(-sin(x) + 0)}{(cos(x) + 2)})ln(e) + \frac{(\frac{1}{3}xln(cos(x) + 2))(0)}{(e)}))}{x^{3}} - \frac{-3}{x^{4}}\\=&\frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}ln(cos(x) + 2)}{3x^{3}} - \frac{3{e}^{(\frac{1}{3}xln(cos(x) + 2))}}{x^{4}} - \frac{{e}^{(\frac{1}{3}xln(cos(x) + 2))}sin(x)}{3(cos(x) + 2)x^{2}} + \frac{3}{x^{4}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!