本次共计算 1 个题目:每一题对 y 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sqrt(y + {(\frac{y}{(4(fR + h))} - (R + h))}^{2}) - R 关于 y 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2}) - R\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2}) - R\right)}{dy}\\=&\frac{(1 + (\frac{-2(0 + 0)}{(4fR + 4h)^{3}})y^{2} + \frac{2y}{(4fR + 4h)^{2}} - 2(\frac{-(0 + 0)}{(4fR + 4h)^{2}})Ry - \frac{2R}{(4fR + 4h)} - 2(\frac{-(0 + 0)}{(4fR + 4h)^{2}})hy - \frac{2h}{(4fR + 4h)} + 0 + 0 + 0)*\frac{1}{2}}{(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2})^{\frac{1}{2}}} + 0\\=& - \frac{R}{(4fR + 4h)(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2})^{\frac{1}{2}}} + \frac{y}{(4fR + 4h)^{2}(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2})^{\frac{1}{2}}} - \frac{h}{(4fR + 4h)(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2})^{\frac{1}{2}}} + \frac{1}{2(y + \frac{y^{2}}{(4fR + 4h)^{2}} - \frac{2Ry}{(4fR + 4h)} - \frac{2hy}{(4fR + 4h)} + 2Rh + R^{2} + h^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!