本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({(1 + x)}^{3}{\frac{1}{(1 - x)}}^{3})}^{\frac{1}{3}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{1}{3}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{1}{3}}\right)}{dx}\\=&(\frac{\frac{1}{3}((\frac{-3(-1 + 0)}{(-x + 1)^{4}})x^{3} + \frac{3x^{2}}{(-x + 1)^{3}} + 3(\frac{-3(-1 + 0)}{(-x + 1)^{4}})x^{2} + \frac{3*2x}{(-x + 1)^{3}} + 3(\frac{-3(-1 + 0)}{(-x + 1)^{4}})x + \frac{3}{(-x + 1)^{3}} + (\frac{-3(-1 + 0)}{(-x + 1)^{4}}))}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}})\\=&\frac{x^{3}}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{4}} + \frac{x^{2}}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{3}} + \frac{3x^{2}}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{4}} + \frac{2x}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{3}} + \frac{3x}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{4}} + \frac{1}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{4}} + \frac{1}{(\frac{x^{3}}{(-x + 1)^{3}} + \frac{3x^{2}}{(-x + 1)^{3}} + \frac{3x}{(-x + 1)^{3}} + \frac{1}{(-x + 1)^{3}})^{\frac{2}{3}}(-x + 1)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!