本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{75999.85009cos(x)}{sqrt(154072.92 + 74746.76sin(x))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{75999.85009cos(x)}{sqrt(74746.76sin(x) + 154072.92)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{75999.85009cos(x)}{sqrt(74746.76sin(x) + 154072.92)}\right)}{dx}\\=&\frac{75999.85009*-sin(x)}{sqrt(74746.76sin(x) + 154072.92)} + \frac{75999.85009cos(x)*-(74746.76cos(x) + 0)*0.5}{(74746.76sin(x) + 154072.92)(74746.76sin(x) + 154072.92)^{\frac{1}{2}}}\\=&\frac{-75999.85009sin(x)}{sqrt(74746.76sin(x) + 154072.92)} - \frac{2840371277.3566cos(x)cos(x)}{(74746.76sin(x) + 154072.92)(74746.76sin(x) + 154072.92)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!