本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(e^{\frac{-({(y - x)}^{2})x}{2}})}{({(2dx)}^{\frac{1}{2}})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{1}{2}}}\right)}{dx}\\=&\frac{\frac{-1}{2}e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{3}{2}}} + \frac{e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}(\frac{-1}{2}y^{2} + y*2x - \frac{1}{2}*3x^{2})}{2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{1}{2}}}\\=&\frac{-e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2*2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{3}{2}}} - \frac{y^{2}e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2*2^{\frac{1}{2}}d^{\frac{1}{2}}x^{\frac{1}{2}}} + \frac{2yx^{\frac{1}{2}}e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2^{\frac{1}{2}}d^{\frac{1}{2}}} - \frac{3x^{\frac{3}{2}}e^{\frac{-1}{2}y^{2}x + yx^{2} - \frac{1}{2}x^{3}}}{2*2^{\frac{1}{2}}d^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!