本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{({(x - 1)}^{5})}{({(10x - 6)}^{9})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{5}}{(10x - 6)^{9}} - \frac{5x^{4}}{(10x - 6)^{9}} + \frac{10x^{3}}{(10x - 6)^{9}} - \frac{10x^{2}}{(10x - 6)^{9}} + \frac{5x}{(10x - 6)^{9}} - \frac{1}{(10x - 6)^{9}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{5}}{(10x - 6)^{9}} - \frac{5x^{4}}{(10x - 6)^{9}} + \frac{10x^{3}}{(10x - 6)^{9}} - \frac{10x^{2}}{(10x - 6)^{9}} + \frac{5x}{(10x - 6)^{9}} - \frac{1}{(10x - 6)^{9}}\right)}{dx}\\=&(\frac{-9(10 + 0)}{(10x - 6)^{10}})x^{5} + \frac{5x^{4}}{(10x - 6)^{9}} - 5(\frac{-9(10 + 0)}{(10x - 6)^{10}})x^{4} - \frac{5*4x^{3}}{(10x - 6)^{9}} + 10(\frac{-9(10 + 0)}{(10x - 6)^{10}})x^{3} + \frac{10*3x^{2}}{(10x - 6)^{9}} - 10(\frac{-9(10 + 0)}{(10x - 6)^{10}})x^{2} - \frac{10*2x}{(10x - 6)^{9}} + 5(\frac{-9(10 + 0)}{(10x - 6)^{10}})x + \frac{5}{(10x - 6)^{9}} - (\frac{-9(10 + 0)}{(10x - 6)^{10}})\\=&\frac{-90x^{5}}{(10x - 6)^{10}} + \frac{5x^{4}}{(10x - 6)^{9}} + \frac{450x^{4}}{(10x - 6)^{10}} - \frac{20x^{3}}{(10x - 6)^{9}} - \frac{900x^{3}}{(10x - 6)^{10}} + \frac{30x^{2}}{(10x - 6)^{9}} + \frac{900x^{2}}{(10x - 6)^{10}} - \frac{20x}{(10x - 6)^{9}} - \frac{450x}{(10x - 6)^{10}} + \frac{5}{(10x - 6)^{9}} + \frac{90}{(10x - 6)^{10}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!