本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(x + 1)}^{2}}{(4{x}^{2}(1 - ln(x)))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x^{2}}{(-4x^{2}ln(x) + 4x^{2})} + \frac{2x}{(-4x^{2}ln(x) + 4x^{2})} + \frac{1}{(-4x^{2}ln(x) + 4x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x^{2}}{(-4x^{2}ln(x) + 4x^{2})} + \frac{2x}{(-4x^{2}ln(x) + 4x^{2})} + \frac{1}{(-4x^{2}ln(x) + 4x^{2})}\right)}{dx}\\=&(\frac{-(-4*2xln(x) - \frac{4x^{2}}{(x)} + 4*2x)}{(-4x^{2}ln(x) + 4x^{2})^{2}})x^{2} + \frac{2x}{(-4x^{2}ln(x) + 4x^{2})} + 2(\frac{-(-4*2xln(x) - \frac{4x^{2}}{(x)} + 4*2x)}{(-4x^{2}ln(x) + 4x^{2})^{2}})x + \frac{2}{(-4x^{2}ln(x) + 4x^{2})} + (\frac{-(-4*2xln(x) - \frac{4x^{2}}{(x)} + 4*2x)}{(-4x^{2}ln(x) + 4x^{2})^{2}})\\=&\frac{8x^{3}ln(x)}{(-4x^{2}ln(x) + 4x^{2})^{2}} + \frac{16x^{2}ln(x)}{(-4x^{2}ln(x) + 4x^{2})^{2}} + \frac{8xln(x)}{(-4x^{2}ln(x) + 4x^{2})^{2}} + \frac{2x}{(-4x^{2}ln(x) + 4x^{2})} - \frac{8x^{2}}{(-4x^{2}ln(x) + 4x^{2})^{2}} - \frac{4x^{3}}{(-4x^{2}ln(x) + 4x^{2})^{2}} - \frac{4x}{(-4x^{2}ln(x) + 4x^{2})^{2}} + \frac{2}{(-4x^{2}ln(x) + 4x^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!