本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 + 2sin(x))}{(5 + 4sin(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2sin(x)}{(4sin(x) + 5)} + \frac{1}{(4sin(x) + 5)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2sin(x)}{(4sin(x) + 5)} + \frac{1}{(4sin(x) + 5)}\right)}{dx}\\=&2(\frac{-(4cos(x) + 0)}{(4sin(x) + 5)^{2}})sin(x) + \frac{2cos(x)}{(4sin(x) + 5)} + (\frac{-(4cos(x) + 0)}{(4sin(x) + 5)^{2}})\\=& - \frac{8sin(x)cos(x)}{(4sin(x) + 5)^{2}} + \frac{2cos(x)}{(4sin(x) + 5)} - \frac{4cos(x)}{(4sin(x) + 5)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{8sin(x)cos(x)}{(4sin(x) + 5)^{2}} + \frac{2cos(x)}{(4sin(x) + 5)} - \frac{4cos(x)}{(4sin(x) + 5)^{2}}\right)}{dx}\\=& - 8(\frac{-2(4cos(x) + 0)}{(4sin(x) + 5)^{3}})sin(x)cos(x) - \frac{8cos(x)cos(x)}{(4sin(x) + 5)^{2}} - \frac{8sin(x)*-sin(x)}{(4sin(x) + 5)^{2}} + 2(\frac{-(4cos(x) + 0)}{(4sin(x) + 5)^{2}})cos(x) + \frac{2*-sin(x)}{(4sin(x) + 5)} - 4(\frac{-2(4cos(x) + 0)}{(4sin(x) + 5)^{3}})cos(x) - \frac{4*-sin(x)}{(4sin(x) + 5)^{2}}\\=&\frac{64sin(x)cos^{2}(x)}{(4sin(x) + 5)^{3}} - \frac{16cos^{2}(x)}{(4sin(x) + 5)^{2}} + \frac{8sin^{2}(x)}{(4sin(x) + 5)^{2}} - \frac{2sin(x)}{(4sin(x) + 5)} + \frac{32cos^{2}(x)}{(4sin(x) + 5)^{3}} + \frac{4sin(x)}{(4sin(x) + 5)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!