本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arcsin(\frac{asin(wx)}{sqrt({(b - acos(wx) - c - y)}^{2} + dsin(wx)sin(wx))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arcsin(\frac{asin(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arcsin(\frac{asin(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))})\right)}{dx}\\=&(\frac{(\frac{acos(wx)w}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))} + \frac{asin(wx)*-(0 - 2ab*-sin(wx)w + 0 + 0 + a^{2}*-2cos(wx)sin(wx)w + 2ac*-sin(wx)w + 2ay*-sin(wx)w + 0 + 0 + 0 + d*2sin(wx)cos(wx)w)*\frac{1}{2}}{(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{1}{2}}})}{((1 - (\frac{asin(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))})^{2})^{\frac{1}{2}})})\\=&\frac{awcos(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))} - \frac{a^{2}wbsin^{2}(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{3}{2}}} + \frac{a^{3}wsin^{2}(wx)cos(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{3}{2}}} + \frac{a^{2}wcsin^{2}(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{3}{2}}} + \frac{a^{2}wysin^{2}(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{3}{2}}} - \frac{awdsin^{2}(wx)cos(wx)}{(\frac{-a^{2}sin^{2}(wx)}{sqrt(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{2}} + 1)^{\frac{1}{2}}(-2bc - 2abcos(wx) - 2by + b^{2} + a^{2}cos^{2}(wx) + 2accos(wx) + 2aycos(wx) + 2cy + c^{2} + y^{2} + dsin^{2}(wx))^{\frac{3}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!