本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(x - 2)({e}^{x})}{(x + (\frac{({x}^{2})}{2}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{x{e}^{x}}{(x + \frac{1}{2}x^{2})} - \frac{2{e}^{x}}{(x + \frac{1}{2}x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{x{e}^{x}}{(x + \frac{1}{2}x^{2})} - \frac{2{e}^{x}}{(x + \frac{1}{2}x^{2})}\right)}{dx}\\=&(\frac{-(1 + \frac{1}{2}*2x)}{(x + \frac{1}{2}x^{2})^{2}})x{e}^{x} + \frac{{e}^{x}}{(x + \frac{1}{2}x^{2})} + \frac{x({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x + \frac{1}{2}x^{2})} - 2(\frac{-(1 + \frac{1}{2}*2x)}{(x + \frac{1}{2}x^{2})^{2}}){e}^{x} - \frac{2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{(x + \frac{1}{2}x^{2})}\\=&\frac{-x^{2}{e}^{x}}{(x + \frac{1}{2}x^{2})^{2}} + \frac{x{e}^{x}}{(x + \frac{1}{2}x^{2})^{2}} - \frac{{e}^{x}}{(x + \frac{1}{2}x^{2})} + \frac{2{e}^{x}}{(x + \frac{1}{2}x^{2})^{2}} + \frac{x{e}^{x}}{(x + \frac{1}{2}x^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!