本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(s - 2dsin(x))}{(xdsin(x))} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{s}{dxsin(x)} - \frac{2}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{s}{dxsin(x)} - \frac{2}{x}\right)}{dx}\\=&\frac{s*-1}{dx^{2}sin(x)} + \frac{s*-cos(x)}{dxsin^{2}(x)} - \frac{2*-1}{x^{2}}\\=&\frac{-scos(x)}{dxsin^{2}(x)} - \frac{s}{dx^{2}sin(x)} + \frac{2}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-scos(x)}{dxsin^{2}(x)} - \frac{s}{dx^{2}sin(x)} + \frac{2}{x^{2}}\right)}{dx}\\=&\frac{-s*-cos(x)}{dx^{2}sin^{2}(x)} - \frac{s*-2cos(x)cos(x)}{dxsin^{3}(x)} - \frac{s*-sin(x)}{dxsin^{2}(x)} - \frac{s*-2}{dx^{3}sin(x)} - \frac{s*-cos(x)}{dx^{2}sin^{2}(x)} + \frac{2*-2}{x^{3}}\\=&\frac{2scos(x)}{dx^{2}sin^{2}(x)} + \frac{2scos^{2}(x)}{dxsin^{3}(x)} + \frac{s}{dxsin(x)} + \frac{2s}{dx^{3}sin(x)} - \frac{4}{x^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!