本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(s - 2dsin(x))dsin(x)}{x} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sdsin(x)}{x} - \frac{2d^{2}sin^{2}(x)}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sdsin(x)}{x} - \frac{2d^{2}sin^{2}(x)}{x}\right)}{dx}\\=&\frac{sd*-sin(x)}{x^{2}} + \frac{sdcos(x)}{x} - \frac{2d^{2}*-sin^{2}(x)}{x^{2}} - \frac{2d^{2}*2sin(x)cos(x)}{x}\\=&\frac{-sdsin(x)}{x^{2}} + \frac{sdcos(x)}{x} - \frac{4d^{2}sin(x)cos(x)}{x} + \frac{2d^{2}sin^{2}(x)}{x^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-sdsin(x)}{x^{2}} + \frac{sdcos(x)}{x} - \frac{4d^{2}sin(x)cos(x)}{x} + \frac{2d^{2}sin^{2}(x)}{x^{2}}\right)}{dx}\\=&\frac{-sd*-2sin(x)}{x^{3}} - \frac{sdcos(x)}{x^{2}} + \frac{sd*-cos(x)}{x^{2}} + \frac{sd*-sin(x)}{x} - \frac{4d^{2}*-sin(x)cos(x)}{x^{2}} - \frac{4d^{2}cos(x)cos(x)}{x} - \frac{4d^{2}sin(x)*-sin(x)}{x} + \frac{2d^{2}*-2sin^{2}(x)}{x^{3}} + \frac{2d^{2}*2sin(x)cos(x)}{x^{2}}\\=&\frac{2sdsin(x)}{x^{3}} - \frac{2sdcos(x)}{x^{2}} - \frac{sdsin(x)}{x} + \frac{8d^{2}sin(x)cos(x)}{x^{2}} - \frac{4d^{2}cos^{2}(x)}{x} + \frac{4d^{2}sin^{2}(x)}{x} - \frac{4d^{2}sin^{2}(x)}{x^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!