本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数k(sin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2} + fcos(\frac{1}{2}){x}^{3}) + l(cos(\frac{1}{2})x(1 - 3sin(\frac{1}{2}){x}^{2}) - 3fsin(\frac{1}{2})xcos(\frac{1}{2}){x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + lxcos(\frac{1}{2}) - 3lx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) - 3flx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( kx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) + kfx^{3}cos(\frac{1}{2}) + lxcos(\frac{1}{2}) - 3lx^{3}sin(\frac{1}{2})cos(\frac{1}{2}) - 3flx^{3}sin(\frac{1}{2})cos(\frac{1}{2})\right)}{dx}\\=&k*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + kx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) + kx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0 + kf*3x^{2}cos(\frac{1}{2}) + kfx^{3}*-sin(\frac{1}{2})*0 + lcos(\frac{1}{2}) + lx*-sin(\frac{1}{2})*0 - 3l*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 3lx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 3lx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0 - 3fl*3x^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 3flx^{3}cos(\frac{1}{2})*0cos(\frac{1}{2}) - 3flx^{3}sin(\frac{1}{2})*-sin(\frac{1}{2})*0\\=&3kx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) + 3kfx^{2}cos(\frac{1}{2}) + lcos(\frac{1}{2}) - 9lx^{2}sin(\frac{1}{2})cos(\frac{1}{2}) - 9flx^{2}sin(\frac{1}{2})cos(\frac{1}{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!