本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{{\frac{1}{x}}^{2}}arctan({x}^{2} + x + \frac{(x - 2)}{(x + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{\frac{1}{x^{2}}}arctan(x^{2} + x + \frac{x}{(x + 1)} - \frac{2}{(x + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{\frac{1}{x^{2}}}arctan(x^{2} + x + \frac{x}{(x + 1)} - \frac{2}{(x + 1)})\right)}{dx}\\=&\frac{e^{\frac{1}{x^{2}}}*-2arctan(x^{2} + x + \frac{x}{(x + 1)} - \frac{2}{(x + 1)})}{x^{3}} + e^{\frac{1}{x^{2}}}(\frac{(2x + 1 + (\frac{-(1 + 0)}{(x + 1)^{2}})x + \frac{1}{(x + 1)} - 2(\frac{-(1 + 0)}{(x + 1)^{2}}))}{(1 + (x^{2} + x + \frac{x}{(x + 1)} - \frac{2}{(x + 1)})^{2})})\\=&\frac{-2e^{\frac{1}{x^{2}}}arctan(x^{2} + x + \frac{x}{(x + 1)} - \frac{2}{(x + 1)})}{x^{3}} + \frac{2xe^{\frac{1}{x^{2}}}}{(x^{4} + 2x^{3} + \frac{2x^{3}}{(x + 1)} - \frac{2x^{2}}{(x + 1)} + x^{2} - \frac{4x}{(x + 1)} + \frac{x^{2}}{(x + 1)^{2}} - \frac{4x}{(x + 1)^{2}} + \frac{4}{(x + 1)^{2}} + 1)} - \frac{xe^{\frac{1}{x^{2}}}}{(x + 1)^{2}(x^{4} + 2x^{3} + \frac{2x^{3}}{(x + 1)} - \frac{2x^{2}}{(x + 1)} + x^{2} - \frac{4x}{(x + 1)} + \frac{x^{2}}{(x + 1)^{2}} - \frac{4x}{(x + 1)^{2}} + \frac{4}{(x + 1)^{2}} + 1)} + \frac{e^{\frac{1}{x^{2}}}}{(x + 1)(x^{4} + 2x^{3} + \frac{2x^{3}}{(x + 1)} - \frac{2x^{2}}{(x + 1)} + x^{2} - \frac{4x}{(x + 1)} + \frac{x^{2}}{(x + 1)^{2}} - \frac{4x}{(x + 1)^{2}} + \frac{4}{(x + 1)^{2}} + 1)} + \frac{2e^{\frac{1}{x^{2}}}}{(x + 1)^{2}(x^{4} + 2x^{3} + \frac{2x^{3}}{(x + 1)} - \frac{2x^{2}}{(x + 1)} + x^{2} - \frac{4x}{(x + 1)} + \frac{x^{2}}{(x + 1)^{2}} - \frac{4x}{(x + 1)^{2}} + \frac{4}{(x + 1)^{2}} + 1)} + \frac{e^{\frac{1}{x^{2}}}}{(x^{4} + 2x^{3} + \frac{2x^{3}}{(x + 1)} - \frac{2x^{2}}{(x + 1)} + x^{2} - \frac{4x}{(x + 1)} + \frac{x^{2}}{(x + 1)^{2}} - \frac{4x}{(x + 1)^{2}} + \frac{4}{(x + 1)^{2}} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!