本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(sqrt({x}^{2} - \frac{lg(3)}{sin(x)})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(x^{2} - \frac{lg(3)}{sin(x)}))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(x^{2} - \frac{lg(3)}{sin(x)}))\right)}{dx}\\=&\frac{(2x - \frac{0}{ln{10}(3)sin(x)} - \frac{lg(3)*-cos(x)}{sin^{2}(x)})*\frac{1}{2}}{(sqrt(x^{2} - \frac{lg(3)}{sin(x)}))(x^{2} - \frac{lg(3)}{sin(x)})^{\frac{1}{2}}}\\=&\frac{x}{(x^{2} - \frac{lg(3)}{sin(x)})^{\frac{1}{2}}sqrt(x^{2} - \frac{lg(3)}{sin(x)})} + \frac{lg(3)cos(x)}{2(x^{2} - \frac{lg(3)}{sin(x)})^{\frac{1}{2}}sin^{2}(x)sqrt(x^{2} - \frac{lg(3)}{sin(x)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!