本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(cos(x) - {e}^{{x}^{2}})sin({x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sin(x^{2})cos(x) - {e}^{x^{2}}sin(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sin(x^{2})cos(x) - {e}^{x^{2}}sin(x^{2})\right)}{dx}\\=&cos(x^{2})*2xcos(x) + sin(x^{2})*-sin(x) - ({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))sin(x^{2}) - {e}^{x^{2}}cos(x^{2})*2x\\=&2xcos(x^{2})cos(x) - sin(x)sin(x^{2}) - 2x{e}^{x^{2}}sin(x^{2}) - 2x{e}^{x^{2}}cos(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!