本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数({e}^{{x}^{2}} + {e}^{({x}^{2} + 1)})ln({e}^{{x}^{2}} + {e}^{({x}^{2} + 1)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{x^{2}}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + {e}^{(x^{2} + 1)}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{x^{2}}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + {e}^{(x^{2} + 1)}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)})\right)}{dx}\\=&({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)}))ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + \frac{{e}^{x^{2}}(({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + ({e}^{(x^{2} + 1)}((2x + 0)ln(e) + \frac{(x^{2} + 1)(0)}{(e)})))}{({e}^{x^{2}} + {e}^{(x^{2} + 1)})} + ({e}^{(x^{2} + 1)}((2x + 0)ln(e) + \frac{(x^{2} + 1)(0)}{(e)}))ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + \frac{{e}^{(x^{2} + 1)}(({e}^{x^{2}}((2x)ln(e) + \frac{(x^{2})(0)}{(e)})) + ({e}^{(x^{2} + 1)}((2x + 0)ln(e) + \frac{(x^{2} + 1)(0)}{(e)})))}{({e}^{x^{2}} + {e}^{(x^{2} + 1)})}\\=&2x{e}^{x^{2}}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + \frac{4x{e}^{(2x^{2} + 2)}}{({e}^{x^{2}} + {e}^{(x^{2} + 1)})} + 2x{e}^{(x^{2} + 1)}ln({e}^{x^{2}} + {e}^{(x^{2} + 1)}) + \frac{4x{e}^{(2x^{2})}}{({e}^{x^{2}} + {e}^{(x^{2} + 1)})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!