本次共计算 1 个题目:每一题对 x 求 8 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{{sin(x)}^{2}} 关于 x 的 8 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{sin^{2}(x)}\\\\ &\color{blue}{函数的 8 阶导数:} \\=&256{e}^{sin^{2}(x)}sin^{8}(x)cos^{8}(x) + 3584{e}^{sin^{2}(x)}sin^{6}(x)cos^{8}(x) - 3584{e}^{sin^{2}(x)}sin^{8}(x)cos^{6}(x) + 13440{e}^{sin^{2}(x)}sin^{4}(x)cos^{8}(x) - 41216{e}^{sin^{2}(x)}sin^{6}(x)cos^{6}(x) + 13440{e}^{sin^{2}(x)}sin^{8}(x)cos^{4}(x) + 13440{e}^{sin^{2}(x)}sin^{2}(x)cos^{8}(x) - 120960{e}^{sin^{2}(x)}sin^{4}(x)cos^{6}(x) + 120960{e}^{sin^{2}(x)}sin^{6}(x)cos^{4}(x) - 13440{e}^{sin^{2}(x)}sin^{8}(x)cos^{2}(x) + 1680{e}^{sin^{2}(x)}cos^{8}(x) - 87360{e}^{sin^{2}(x)}sin^{2}(x)cos^{6}(x) + 257376{e}^{sin^{2}(x)}sin^{4}(x)cos^{4}(x) - 87360{e}^{sin^{2}(x)}sin^{6}(x)cos^{2}(x) + 116928{e}^{sin^{2}(x)}sin^{2}(x)cos^{4}(x) - 6720{e}^{sin^{2}(x)}cos^{6}(x) - 116928{e}^{sin^{2}(x)}sin^{4}(x)cos^{2}(x) - 24448{e}^{sin^{2}(x)}sin^{2}(x)cos^{2}(x) + 4032{e}^{sin^{2}(x)}cos^{4}(x) + 1680{e}^{sin^{2}(x)}sin^{8}(x) + 6720{e}^{sin^{2}(x)}sin^{6}(x) + 4032{e}^{sin^{2}(x)}sin^{4}(x) - 128{e}^{sin^{2}(x)}cos^{2}(x) + 128{e}^{sin^{2}(x)}sin^{2}(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!