本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{1}{2}xsin(\frac{2π}{x})(\frac{1}{2} + \frac{1}{(1 + cos(\frac{2π}{x}))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{4}xsin(\frac{2π}{x}) + \frac{\frac{1}{2}xsin(\frac{2π}{x})}{(cos(\frac{2π}{x}) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{4}xsin(\frac{2π}{x}) + \frac{\frac{1}{2}xsin(\frac{2π}{x})}{(cos(\frac{2π}{x}) + 1)}\right)}{dx}\\=&\frac{1}{4}sin(\frac{2π}{x}) + \frac{\frac{1}{4}xcos(\frac{2π}{x})*2π*-1}{x^{2}} + \frac{1}{2}(\frac{-(\frac{-sin(\frac{2π}{x})*2π*-1}{x^{2}} + 0)}{(cos(\frac{2π}{x}) + 1)^{2}})xsin(\frac{2π}{x}) + \frac{\frac{1}{2}sin(\frac{2π}{x})}{(cos(\frac{2π}{x}) + 1)} + \frac{\frac{1}{2}xcos(\frac{2π}{x})*2π*-1}{(cos(\frac{2π}{x}) + 1)x^{2}}\\=&\frac{sin(\frac{2π}{x})}{4} - \frac{πcos(\frac{2π}{x})}{2x} - \frac{πsin^{2}(\frac{2π}{x})}{(cos(\frac{2π}{x}) + 1)^{2}x} + \frac{sin(\frac{2π}{x})}{2(cos(\frac{2π}{x}) + 1)} - \frac{πcos(\frac{2π}{x})}{(cos(\frac{2π}{x}) + 1)x}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!