数学
         
语言:中文    Language:English
求导函数:
    输入一个原函数(即需要求导的函数),然后设置需要求导的变量和求导的阶数,点击“下一步”按钮,即可获得该函数相应阶数的导函数。
    注意,输入的函数支持数学函数和其它常量。
    当前位置:求导函数 > 导函数计算历史 > 答案

    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(ln(1 + {\frac{1}{100}}^{x})) - {(1 + {100}^{x})}^{\frac{1}{x}} + 100 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln({\frac{1}{100}}^{x} + 1) - ({100}^{x} + 1)^{\frac{1}{x}} + 100\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln({\frac{1}{100}}^{x} + 1) - ({100}^{x} + 1)^{\frac{1}{x}} + 100\right)}{dx}\\=&\frac{(({\frac{1}{100}}^{x}((1)ln(\frac{1}{100}) + \frac{(x)(0)}{(\frac{1}{100})})) + 0)}{({\frac{1}{100}}^{x} + 1)} - (({100}^{x} + 1)^{\frac{1}{x}}((\frac{-1}{x^{2}})ln({100}^{x} + 1) + \frac{(\frac{1}{x})(({100}^{x}((1)ln(100) + \frac{(x)(0)}{(100)})) + 0)}{({100}^{x} + 1)})) + 0\\=&\frac{{\frac{1}{100}}^{x}ln(\frac{1}{100})}{({\frac{1}{100}}^{x} + 1)} + \frac{({100}^{x} + 1)^{\frac{1}{x}}ln({100}^{x} + 1)}{x^{2}} - \frac{{100}^{x}({100}^{x} + 1)^{\frac{1}{x}}ln(100)}{({100}^{x} + 1)x}\\ \end{split}\end{equation} \]



你的问题在这里没有得到解决?请到 热门难题 里面看看吧!





  新增加学习笔记(安卓版)百度网盘快速下载应用程序,欢迎使用。
  新增加学习笔记(安卓版)本站下载应用程序,欢迎使用。

  新增线性代数行列式的计算,欢迎使用。

  数学计算和一元方程已经支持正割函数余割函数,欢迎使用。

  新增加贷款计算器模块(具体位置:数学运算 > 贷款计算器),欢迎使用。