本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(2({e}^{x} + sin(x) - 1)(1 + sqrt(cos(x)))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2{e}^{x}sqrt(cos(x)) + 2{e}^{x} + 2sin(x)sqrt(cos(x)) + 2sin(x) - 2sqrt(cos(x)) - 2\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2{e}^{x}sqrt(cos(x)) + 2{e}^{x} + 2sin(x)sqrt(cos(x)) + 2sin(x) - 2sqrt(cos(x)) - 2\right)}{dx}\\=&2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sqrt(cos(x)) + \frac{2{e}^{x}*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} + 2({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + 2cos(x)sqrt(cos(x)) + \frac{2sin(x)*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} + 2cos(x) - \frac{2*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} + 0\\=&2{e}^{x}sqrt(cos(x)) - \frac{{e}^{x}sin(x)}{cos^{\frac{1}{2}}(x)} + 2{e}^{x} + 2cos(x)sqrt(cos(x)) - \frac{sin^{2}(x)}{cos^{\frac{1}{2}}(x)} + 2cos(x) + \frac{sin(x)}{cos^{\frac{1}{2}}(x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!