本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(2ln({e}^{x} + sin(x))(1 + sqrt(cos(x)))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 2ln({e}^{x} + sin(x))sqrt(cos(x)) + 2ln({e}^{x} + sin(x))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 2ln({e}^{x} + sin(x))sqrt(cos(x)) + 2ln({e}^{x} + sin(x))\right)}{dx}\\=&\frac{2(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + cos(x))sqrt(cos(x))}{({e}^{x} + sin(x))} + \frac{2ln({e}^{x} + sin(x))*-sin(x)*\frac{1}{2}}{(cos(x))^{\frac{1}{2}}} + \frac{2(({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})) + cos(x))}{({e}^{x} + sin(x))}\\=&\frac{2{e}^{x}sqrt(cos(x))}{({e}^{x} + sin(x))} + \frac{2cos(x)sqrt(cos(x))}{({e}^{x} + sin(x))} - \frac{ln({e}^{x} + sin(x))sin(x)}{cos^{\frac{1}{2}}(x)} + \frac{2{e}^{x}}{({e}^{x} + sin(x))} + \frac{2cos(x)}{({e}^{x} + sin(x))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!