本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{((log_{a}^{{e}^{{({x}^{2} + 5x)}^{\frac{1}{2}}}} - {e}^{{(ln(x))}^{\frac{1}{2}}}))x{e}^{{({x}^{3} + 2x)}^{\frac{1}{2}}}}{2} - ln({({x}^{3} + 2x)}^{\frac{1}{2}}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{1}{2}x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{1}{2}x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - ln((x^{3} + 2x)^{\frac{1}{2}})\right)}{dx}\\=&\frac{1}{2}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} + \frac{1}{2}x({e}^{(x^{3} + 2x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{3} + 2x)^{\frac{1}{2}})(0)}{(e)}))log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}} + \frac{1}{2}x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}(\frac{(\frac{(({e}^{(x^{2} + 5x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(2x + 5)}{(x^{2} + 5x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{2} + 5x)^{\frac{1}{2}})(0)}{(e)})))}{({e}^{(x^{2} + 5x)^{\frac{1}{2}}})} - \frac{(0)log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}}}{(a)})}{(ln(a))}) - \frac{1}{2}{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}} - \frac{1}{2}x({e}^{ln^{\frac{1}{2}}(x)}((\frac{\frac{1}{2}}{ln^{\frac{1}{2}}(x)(x)})ln(e) + \frac{(ln^{\frac{1}{2}}(x))(0)}{(e)})){e}^{(x^{3} + 2x)^{\frac{1}{2}}} - \frac{1}{2}x{e}^{ln^{\frac{1}{2}}(x)}({e}^{(x^{3} + 2x)^{\frac{1}{2}}}(((\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}}))ln(e) + \frac{((x^{3} + 2x)^{\frac{1}{2}})(0)}{(e)})) - \frac{(\frac{\frac{1}{2}(3x^{2} + 2)}{(x^{3} + 2x)^{\frac{1}{2}}})}{((x^{3} + 2x)^{\frac{1}{2}})}\\=&\frac{{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}}}{2} + \frac{3x^{3}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}}}{4(x^{3} + 2x)^{\frac{1}{2}}} + \frac{x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}log_{a}^{{e}^{(x^{2} + 5x)^{\frac{1}{2}}}}}{2(x^{3} + 2x)^{\frac{1}{2}}} + \frac{x^{2}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{2(x^{2} + 5x)^{\frac{1}{2}}ln(a)} + \frac{5x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{4(x^{2} + 5x)^{\frac{1}{2}}ln(a)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{4ln^{\frac{1}{2}}(x)} - \frac{{e}^{ln^{\frac{1}{2}}(x)}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}}{2} - \frac{3x^{3}{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{4(x^{3} + 2x)^{\frac{1}{2}}} - \frac{x{e}^{(x^{3} + 2x)^{\frac{1}{2}}}{e}^{ln^{\frac{1}{2}}(x)}}{2(x^{3} + 2x)^{\frac{1}{2}}} - \frac{3x^{2}}{2(x^{3} + 2x)} - \frac{1}{(x^{3} + 2x)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!