本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln({x}^{2} - x - 2) + \frac{(ln(\frac{(x - 2)}{(x - 1)}))}{3} + c 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x^{2} - x - 2) + \frac{1}{3}ln(\frac{x}{(x - 1)} - \frac{2}{(x - 1)}) + c\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x^{2} - x - 2) + \frac{1}{3}ln(\frac{x}{(x - 1)} - \frac{2}{(x - 1)}) + c\right)}{dx}\\=&\frac{(2x - 1 + 0)}{(x^{2} - x - 2)} + \frac{\frac{1}{3}((\frac{-(1 + 0)}{(x - 1)^{2}})x + \frac{1}{(x - 1)} - 2(\frac{-(1 + 0)}{(x - 1)^{2}}))}{(\frac{x}{(x - 1)} - \frac{2}{(x - 1)})} + 0\\=&\frac{2x}{(x^{2} - x - 2)} - \frac{x}{3(x - 1)^{2}(\frac{x}{(x - 1)} - \frac{2}{(x - 1)})} + \frac{2}{3(x - 1)^{2}(\frac{x}{(x - 1)} - \frac{2}{(x - 1)})} + \frac{1}{3(\frac{x}{(x - 1)} - \frac{2}{(x - 1)})(x - 1)} - \frac{1}{(x^{2} - x - 2)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!