本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数arctan(\frac{(tan(\frac{x}{2}))}{sqrt(3)}) + arctan(sqrt(3)tan(\frac{x}{2})) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = arctan(\frac{tan(\frac{1}{2}x)}{sqrt(3)}) + arctan(tan(\frac{1}{2}x)sqrt(3))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( arctan(\frac{tan(\frac{1}{2}x)}{sqrt(3)}) + arctan(tan(\frac{1}{2}x)sqrt(3))\right)}{dx}\\=&(\frac{(\frac{sec^{2}(\frac{1}{2}x)(\frac{1}{2})}{sqrt(3)} + \frac{tan(\frac{1}{2}x)*-0*\frac{1}{2}*3^{\frac{1}{2}}}{(3)})}{(1 + (\frac{tan(\frac{1}{2}x)}{sqrt(3)})^{2})}) + (\frac{(sec^{2}(\frac{1}{2}x)(\frac{1}{2})sqrt(3) + tan(\frac{1}{2}x)*0*\frac{1}{2}*3^{\frac{1}{2}})}{(1 + (tan(\frac{1}{2}x)sqrt(3))^{2})})\\=&\frac{sec^{2}(\frac{1}{2}x)}{2(\frac{tan^{2}(\frac{1}{2}x)}{sqrt(3)^{2}} + 1)sqrt(3)} + \frac{sqrt(3)sec^{2}(\frac{1}{2}x)}{2(tan^{2}(\frac{1}{2}x)sqrt(3)^{2} + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!