本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x) - \frac{2(x - 1)}{(x + 1)} - \frac{{(x - 1)}^{3}{x}^{2}(x + 1)}{6} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x) - \frac{1}{6}x^{6} + \frac{1}{3}x^{5} - \frac{1}{3}x^{3} + \frac{1}{6}x^{2} - \frac{2x}{(x + 1)} + \frac{2}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x) - \frac{1}{6}x^{6} + \frac{1}{3}x^{5} - \frac{1}{3}x^{3} + \frac{1}{6}x^{2} - \frac{2x}{(x + 1)} + \frac{2}{(x + 1)}\right)}{dx}\\=&\frac{1}{(x)} - \frac{1}{6}*6x^{5} + \frac{1}{3}*5x^{4} - \frac{1}{3}*3x^{2} + \frac{1}{6}*2x - 2(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{2}{(x + 1)} + 2(\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{1}{x} - x^{5} + \frac{5x^{4}}{3} - x^{2} + \frac{x}{3} + \frac{2x}{(x + 1)^{2}} - \frac{2}{(x + 1)^{2}} - \frac{2}{(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!