本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln(x) - (\frac{(2x - 2)}{(x + 1)}) - (\frac{({(x - 1)}^{3})}{(6{x}^{3} + 6{x}^{2})}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(x) - \frac{2x}{(x + 1)} - \frac{x^{3}}{(6x^{3} + 6x^{2})} + \frac{3x^{2}}{(6x^{3} + 6x^{2})} - \frac{3x}{(6x^{3} + 6x^{2})} + \frac{2}{(x + 1)} + \frac{1}{(6x^{3} + 6x^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(x) - \frac{2x}{(x + 1)} - \frac{x^{3}}{(6x^{3} + 6x^{2})} + \frac{3x^{2}}{(6x^{3} + 6x^{2})} - \frac{3x}{(6x^{3} + 6x^{2})} + \frac{2}{(x + 1)} + \frac{1}{(6x^{3} + 6x^{2})}\right)}{dx}\\=&\frac{1}{(x)} - 2(\frac{-(1 + 0)}{(x + 1)^{2}})x - \frac{2}{(x + 1)} - (\frac{-(6*3x^{2} + 6*2x)}{(6x^{3} + 6x^{2})^{2}})x^{3} - \frac{3x^{2}}{(6x^{3} + 6x^{2})} + 3(\frac{-(6*3x^{2} + 6*2x)}{(6x^{3} + 6x^{2})^{2}})x^{2} + \frac{3*2x}{(6x^{3} + 6x^{2})} - 3(\frac{-(6*3x^{2} + 6*2x)}{(6x^{3} + 6x^{2})^{2}})x - \frac{3}{(6x^{3} + 6x^{2})} + 2(\frac{-(1 + 0)}{(x + 1)^{2}}) + (\frac{-(6*3x^{2} + 6*2x)}{(6x^{3} + 6x^{2})^{2}})\\=&\frac{1}{x} + \frac{2x}{(x + 1)^{2}} - \frac{3x^{2}}{(6x^{3} + 6x^{2})} + \frac{18x^{5}}{(6x^{3} + 6x^{2})^{2}} - \frac{42x^{4}}{(6x^{3} + 6x^{2})^{2}} + \frac{6x}{(6x^{3} + 6x^{2})} + \frac{18x^{3}}{(6x^{3} + 6x^{2})^{2}} + \frac{18x^{2}}{(6x^{3} + 6x^{2})^{2}} - \frac{12x}{(6x^{3} + 6x^{2})^{2}} - \frac{3}{(6x^{3} + 6x^{2})} - \frac{2}{(x + 1)} - \frac{2}{(x + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!