本次共计算 1 个题目:每一题对 L 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{n}^{2}}{(2L)} + nLlog_{2}^{n} 关于 L 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = nLlog_{2}^{n} + \frac{\frac{1}{2}n^{2}}{L}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( nLlog_{2}^{n} + \frac{\frac{1}{2}n^{2}}{L}\right)}{dL}\\=&nlog_{2}^{n} + nL(\frac{(\frac{(0)}{(n)} - \frac{(0)log_{2}^{n}}{(2)})}{(ln(2))}) + \frac{\frac{1}{2}n^{2}*-1}{L^{2}}\\=&nlog_{2}^{n} - \frac{n^{2}}{2L^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!