本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-cos(x) + 6tan(x) - 201sin(x) 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -cos(x) + 6tan(x) - 201sin(x)\right)}{dx}\\=&--sin(x) + 6sec^{2}(x)(1) - 201cos(x)\\=&sin(x) + 6sec^{2}(x) - 201cos(x)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( sin(x) + 6sec^{2}(x) - 201cos(x)\right)}{dx}\\=&cos(x) + 6*2sec^{2}(x)tan(x) - 201*-sin(x)\\=&cos(x) + 12tan(x)sec^{2}(x) + 201sin(x)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( cos(x) + 12tan(x)sec^{2}(x) + 201sin(x)\right)}{dx}\\=&-sin(x) + 12sec^{2}(x)(1)sec^{2}(x) + 12tan(x)*2sec^{2}(x)tan(x) + 201cos(x)\\=&-sin(x) + 12sec^{4}(x) + 24tan^{2}(x)sec^{2}(x) + 201cos(x)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( -sin(x) + 12sec^{4}(x) + 24tan^{2}(x)sec^{2}(x) + 201cos(x)\right)}{dx}\\=&-cos(x) + 12*4sec^{4}(x)tan(x) + 24*2tan(x)sec^{2}(x)(1)sec^{2}(x) + 24tan^{2}(x)*2sec^{2}(x)tan(x) + 201*-sin(x)\\=&-cos(x) + 96tan(x)sec^{4}(x) + 48tan^{3}(x)sec^{2}(x) - 201sin(x)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!