本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-rwsin(wx) - r*2wsin(wx)cos(wx)(-r*2sin(2)(wx)l*2 + 1)*12l 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -rwsin(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)cos(wx) - 24rwlsin(wx)cos(wx)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -rwsin(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)cos(wx) - 24rwlsin(wx)cos(wx)\right)}{dx}\\=&-rwcos(wx)w + 96r^{2}w^{2}l^{2}sin(wx)sin(2)cos(wx) + 96r^{2}w^{2}l^{2}xcos(wx)wsin(2)cos(wx) + 96r^{2}w^{2}l^{2}xsin(wx)cos(2)*0cos(wx) + 96r^{2}w^{2}l^{2}xsin(wx)sin(2)*-sin(wx)w - 24rwlcos(wx)wcos(wx) - 24rwlsin(wx)*-sin(wx)w\\=&-rw^{2}cos(wx) + 96r^{2}w^{2}l^{2}sin(wx)sin(2)cos(wx) + 96r^{2}w^{3}l^{2}xsin(2)cos^{2}(wx) - 96r^{2}w^{3}l^{2}xsin^{2}(wx)sin(2) - 24rw^{2}lcos^{2}(wx) + 24rw^{2}lsin^{2}(wx)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!