本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数sin(x){\frac{1}{({a}^{2} + {b}^{2} - 2abcos(x))}}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{sin(x)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{1}{2}}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{sin(x)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{1}{2}}}\right)}{dx}\\=&(\frac{\frac{-1}{2}(-2ab*-sin(x) + 0 + 0)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{3}{2}}})sin(x) + \frac{cos(x)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{1}{2}}}\\=&\frac{-absin^{2}(x)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{3}{2}}} + \frac{cos(x)}{(-2abcos(x) + b^{2} + a^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!