本次共计算 1 个题目:每一题对 o 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数tanh_{sin(sinh(\frac{1}{o}))}^{cos(sinh(sin(o)))} 关于 o 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tanh_{sin(sinh(\frac{1}{o}))}^{cos(sinh(sin(o)))}\right)}{do}\\=&\frac{sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{2}}\\=&\frac{-cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{2}}\right)}{do}\\=&\frac{--2cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{3}} - \frac{-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{2}o^{2}} - \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{2}o^{2}} - \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{2}o^{2}}\\=&\frac{2cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{3}} - \frac{sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} + \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} - \frac{2cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{3}} - \frac{sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} + \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} - \frac{2cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}}\right)}{do}\\=&\frac{2*-3cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} + \frac{2*-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{3}o^{2}} + \frac{2cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{3}o^{2}} + \frac{2cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{3}o^{2}} - \frac{-4sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{sin(sinh(\frac{1}{o}))*2cosh(\frac{1}{o})sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{4}o^{2}} + \frac{-4cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} + \frac{-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} + \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} + \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{4}o^{2}} - \frac{2*-4cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{2*-2cos(sinh(\frac{1}{o}))sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{2cos^{2}(sinh(\frac{1}{o}))*2cosh(\frac{1}{o})sinh(\frac{1}{o})*-tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{2cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{2cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{4}o^{2}}\\=&\frac{-6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} + \frac{6sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{6cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} + \frac{12cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} + \frac{cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{3sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{2cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{4cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{-6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}} + \frac{6sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{6cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} + \frac{12cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} + \frac{cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{3sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{2cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{4cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}}\right)}{do}\\=&\frac{-6*-4cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{6*-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{6cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{4}o^{2}} - \frac{6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{4}o^{2}} + \frac{6*-5sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} + \frac{6sin(sinh(\frac{1}{o}))*2cosh(\frac{1}{o})sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} + \frac{6sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{5}o^{2}} - \frac{6*-5cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{6*-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} - \frac{6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} - \frac{6cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{5}o^{2}} + \frac{12*-5cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{12*-2cos(sinh(\frac{1}{o}))sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} + \frac{12cos^{2}(sinh(\frac{1}{o}))*2cosh(\frac{1}{o})sinh(\frac{1}{o})*-tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} + \frac{12cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}o^{2}} + \frac{12cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{5}o^{2}} + \frac{-6cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{cos(sinh(\frac{1}{o}))*3cosh^{2}(\frac{1}{o})sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} + \frac{3*-6sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{3cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{3sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{3sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{3sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} - \frac{6*-6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{6sin(sinh(\frac{1}{o}))*-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))*3cosh^{2}(\frac{1}{o})sinh(\frac{1}{o})*-tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{6sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} - \frac{-6cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{-sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} + \frac{6*-6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{6*-2cos(sinh(\frac{1}{o}))sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{6cos^{2}(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})sinh(\frac{1}{o})*-tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{6cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} + \frac{2*-6cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{2*-3cos^{2}(sinh(\frac{1}{o}))sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{3}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{2cos^{3}(sinh(\frac{1}{o}))*3cosh^{2}(\frac{1}{o})sinh(\frac{1}{o})*-sech^{4}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} + \frac{2cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})*-4sech^{3}(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}} - \frac{4*-6cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{4*-3cos^{2}(sinh(\frac{1}{o}))sin(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{4cos^{3}(sinh(\frac{1}{o}))*3cosh^{2}(\frac{1}{o})sinh(\frac{1}{o})*-tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{4cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})*2tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}o^{2}} - \frac{4cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))*-2sech(sin(sinh(\frac{1}{o})))sech(sin(sinh(\frac{1}{o})))tanh(sin(sinh(\frac{1}{o})))cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})*-1}{o^{6}o^{2}}\\=&\frac{24cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{5}} - \frac{36sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} + \frac{36cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{72cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{6}} - \frac{12cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{36sin(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{72sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{12cos(sinh(\frac{1}{o}))cosh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{72cos^{2}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} - \frac{24cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{48cos^{3}(sinh(\frac{1}{o}))cosh^{3}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{7}} + \frac{sin(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{6cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{8cos^{2}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{4sin(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{3sin(sinh(\frac{1}{o}))sinh^{2}(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{36sin(sinh(\frac{1}{o}))cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{6sin^{2}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{12sin(sinh(\frac{1}{o}))cos^{2}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{24sin(sinh(\frac{1}{o}))cos^{2}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{cos(sinh(\frac{1}{o}))sinh(\frac{1}{o})sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{8cos^{2}(sinh(\frac{1}{o}))cosh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{6cos^{2}(sinh(\frac{1}{o}))sinh^{2}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{12cos^{3}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh^{2}(\frac{1}{o})sech^{4}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{24cos^{3}(sinh(\frac{1}{o}))sinh(\frac{1}{o})cosh^{2}(\frac{1}{o})tanh^{2}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}} + \frac{16cos^{4}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})tanh(sin(sinh(\frac{1}{o})))sech^{4}(sin(sinh(\frac{1}{o})))}{o^{8}} - \frac{8cos^{4}(sinh(\frac{1}{o}))cosh^{4}(\frac{1}{o})tanh^{3}(sin(sinh(\frac{1}{o})))sech^{2}(sin(sinh(\frac{1}{o})))}{o^{8}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!