本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数ln({sqrt(xsqrt(2x))}^{2} + ln(sqrt(xsqrt(2x))x + cos(x + 2))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))\right)}{dx}\\=&\frac{(\frac{2(xsqrt(2x))^{\frac{1}{2}}(sqrt(2x) + \frac{x*2*\frac{1}{2}}{(2x)^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(2x))^{\frac{1}{2}}} + \frac{(sqrt(xsqrt(2x)) + \frac{x(sqrt(2x) + \frac{x*2*\frac{1}{2}}{(2x)^{\frac{1}{2}}})*\frac{1}{2}}{(xsqrt(2x))^{\frac{1}{2}}} + -sin(x + 2)(1 + 0))}{(xsqrt(xsqrt(2x)) + cos(x + 2))})}{(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))}\\=&\frac{sqrt(2x)}{(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))} + \frac{x^{\frac{1}{2}}}{2^{\frac{1}{2}}(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))} + \frac{sqrt(xsqrt(2x))}{(xsqrt(xsqrt(2x)) + cos(x + 2))(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))} + \frac{x^{\frac{1}{2}}sqrt(2x)^{\frac{1}{2}}}{2(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))(xsqrt(xsqrt(2x)) + cos(x + 2))} + \frac{x}{2*2^{\frac{1}{2}}(xsqrt(xsqrt(2x)) + cos(x + 2))(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))sqrt(2x)^{\frac{1}{2}}} - \frac{sin(x + 2)}{(xsqrt(xsqrt(2x)) + cos(x + 2))(sqrt(xsqrt(2x))^{2} + ln(xsqrt(xsqrt(2x)) + cos(x + 2)))}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!