本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{2}^{(x + y + 2)}{ln(2)}^{3} + y{2}^{(x + y)}{ln(2)}^{4} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {2}^{(x + y + 2)}ln^{3}(2) + y{2}^{(x + y)}ln^{4}(2)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {2}^{(x + y + 2)}ln^{3}(2) + y{2}^{(x + y)}ln^{4}(2)\right)}{dx}\\=&({2}^{(x + y + 2)}((1 + 0 + 0)ln(2) + \frac{(x + y + 2)(0)}{(2)}))ln^{3}(2) + \frac{{2}^{(x + y + 2)}*3ln^{2}(2)*0}{(2)} + y({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{4}(2) + \frac{y{2}^{(x + y)}*4ln^{3}(2)*0}{(2)}\\=&{2}^{(x + y + 2)}ln^{4}(2) + y{2}^{(x + y)}ln^{5}(2)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {2}^{(x + y + 2)}ln^{4}(2) + y{2}^{(x + y)}ln^{5}(2)\right)}{dx}\\=&({2}^{(x + y + 2)}((1 + 0 + 0)ln(2) + \frac{(x + y + 2)(0)}{(2)}))ln^{4}(2) + \frac{{2}^{(x + y + 2)}*4ln^{3}(2)*0}{(2)} + y({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{5}(2) + \frac{y{2}^{(x + y)}*5ln^{4}(2)*0}{(2)}\\=&{2}^{(x + y + 2)}ln^{5}(2) + y{2}^{(x + y)}ln^{6}(2)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( {2}^{(x + y + 2)}ln^{5}(2) + y{2}^{(x + y)}ln^{6}(2)\right)}{dx}\\=&({2}^{(x + y + 2)}((1 + 0 + 0)ln(2) + \frac{(x + y + 2)(0)}{(2)}))ln^{5}(2) + \frac{{2}^{(x + y + 2)}*5ln^{4}(2)*0}{(2)} + y({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{6}(2) + \frac{y{2}^{(x + y)}*6ln^{5}(2)*0}{(2)}\\=&{2}^{(x + y + 2)}ln^{6}(2) + y{2}^{(x + y)}ln^{7}(2)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( {2}^{(x + y + 2)}ln^{6}(2) + y{2}^{(x + y)}ln^{7}(2)\right)}{dx}\\=&({2}^{(x + y + 2)}((1 + 0 + 0)ln(2) + \frac{(x + y + 2)(0)}{(2)}))ln^{6}(2) + \frac{{2}^{(x + y + 2)}*6ln^{5}(2)*0}{(2)} + y({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{7}(2) + \frac{y{2}^{(x + y)}*7ln^{6}(2)*0}{(2)}\\=&{2}^{(x + y + 2)}ln^{7}(2) + y{2}^{(x + y)}ln^{8}(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!