本次共计算 1 个题目:每一题对 x 求 4 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数x{2}^{(x + y)} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x{2}^{(x + y)}\right)}{dx}\\=&{2}^{(x + y)} + x({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))\\=&{2}^{(x + y)} + x{2}^{(x + y)}ln(2)\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( {2}^{(x + y)} + x{2}^{(x + y)}ln(2)\right)}{dx}\\=&({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)})) + {2}^{(x + y)}ln(2) + x({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln(2) + \frac{x{2}^{(x + y)}*0}{(2)}\\=&2 * {2}^{(x + y)}ln(2) + x{2}^{(x + y)}ln^{2}(2)\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( 2 * {2}^{(x + y)}ln(2) + x{2}^{(x + y)}ln^{2}(2)\right)}{dx}\\=&2({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln(2) + \frac{2 * {2}^{(x + y)}*0}{(2)} + {2}^{(x + y)}ln^{2}(2) + x({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{2}(2) + \frac{x{2}^{(x + y)}*2ln(2)*0}{(2)}\\=&3 * {2}^{(x + y)}ln^{2}(2) + x{2}^{(x + y)}ln^{3}(2)\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( 3 * {2}^{(x + y)}ln^{2}(2) + x{2}^{(x + y)}ln^{3}(2)\right)}{dx}\\=&3({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{2}(2) + \frac{3 * {2}^{(x + y)}*2ln(2)*0}{(2)} + {2}^{(x + y)}ln^{3}(2) + x({2}^{(x + y)}((1 + 0)ln(2) + \frac{(x + y)(0)}{(2)}))ln^{3}(2) + \frac{x{2}^{(x + y)}*3ln^{2}(2)*0}{(2)}\\=&4 * {2}^{(x + y)}ln^{3}(2) + x{2}^{(x + y)}ln^{4}(2)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!