本次共计算 4 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/4】求函数{2}^{((x + 1)(x + 1))}ln(3x + 5) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {2}^{(x^{2} + 2x + 1)}ln(3x + 5)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {2}^{(x^{2} + 2x + 1)}ln(3x + 5)\right)}{dx}\\=&({2}^{(x^{2} + 2x + 1)}((2x + 2 + 0)ln(2) + \frac{(x^{2} + 2x + 1)(0)}{(2)}))ln(3x + 5) + \frac{{2}^{(x^{2} + 2x + 1)}(3 + 0)}{(3x + 5)}\\=&2x{2}^{(x^{2} + 2x + 1)}ln(2)ln(3x + 5) + 2 * {2}^{(x^{2} + 2x + 1)}ln(2)ln(3x + 5) + \frac{3 * {2}^{(x^{2} + 2x + 1)}}{(3x + 5)}\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【2/4】求函数sin(x)sin(x){3}^{(xx + 7x - 5)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {3}^{(x^{2} + 7x - 5)}sin^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {3}^{(x^{2} + 7x - 5)}sin^{2}(x)\right)}{dx}\\=&({3}^{(x^{2} + 7x - 5)}((2x + 7 + 0)ln(3) + \frac{(x^{2} + 7x - 5)(0)}{(3)}))sin^{2}(x) + {3}^{(x^{2} + 7x - 5)}*2sin(x)cos(x)\\=&2x{3}^{(x^{2} + 7x - 5)}ln(3)sin^{2}(x) + 7 * {3}^{(x^{2} + 7x - 5)}ln(3)sin^{2}(x) + 2 * {3}^{(x^{2} + 7x - 5)}sin(x)cos(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【3/4】求函数cos(x)cos(x)cos(x)ln(2x + 1) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(2x + 1)cos^{3}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(2x + 1)cos^{3}(x)\right)}{dx}\\=&\frac{(2 + 0)cos^{3}(x)}{(2x + 1)} + ln(2x + 1)*-3cos^{2}(x)sin(x)\\=&\frac{2cos^{3}(x)}{(2x + 1)} - 3ln(2x + 1)sin(x)cos^{2}(x)\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}【4/4】求函数\frac{(cos(2x) + sin(x)sin(x))}{(x + 1)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{cos(2x)}{(x + 1)} + \frac{sin^{2}(x)}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{cos(2x)}{(x + 1)} + \frac{sin^{2}(x)}{(x + 1)}\right)}{dx}\\=&(\frac{-(1 + 0)}{(x + 1)^{2}})cos(2x) + \frac{-sin(2x)*2}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}})sin^{2}(x) + \frac{2sin(x)cos(x)}{(x + 1)}\\=&\frac{-cos(2x)}{(x + 1)^{2}} + \frac{2sin(x)cos(x)}{(x + 1)} - \frac{sin^{2}(x)}{(x + 1)^{2}} - \frac{2sin(2x)}{(x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!