本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{e}^{y}(ysin(x) - xcos(x))}{({x}^{2} + {y}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{y{e}^{y}sin(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}cos(x)}{(x^{2} + y^{2})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{y{e}^{y}sin(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}cos(x)}{(x^{2} + y^{2})}\right)}{dx}\\=&(\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})y{e}^{y}sin(x) + \frac{y({e}^{y}((0)ln(e) + \frac{(y)(0)}{(e)}))sin(x)}{(x^{2} + y^{2})} + \frac{y{e}^{y}cos(x)}{(x^{2} + y^{2})} - (\frac{-(2x + 0)}{(x^{2} + y^{2})^{2}})x{e}^{y}cos(x) - \frac{{e}^{y}cos(x)}{(x^{2} + y^{2})} - \frac{x({e}^{y}((0)ln(e) + \frac{(y)(0)}{(e)}))cos(x)}{(x^{2} + y^{2})} - \frac{x{e}^{y}*-sin(x)}{(x^{2} + y^{2})}\\=&\frac{-2yx{e}^{y}sin(x)}{(x^{2} + y^{2})^{2}} + \frac{y{e}^{y}cos(x)}{(x^{2} + y^{2})} + \frac{2x^{2}{e}^{y}cos(x)}{(x^{2} + y^{2})^{2}} - \frac{{e}^{y}cos(x)}{(x^{2} + y^{2})} + \frac{x{e}^{y}sin(x)}{(x^{2} + y^{2})}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!