本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{-72x}{({(x + 3)}^{2})} + \frac{36}{({(x + 3)}^{2})} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-72x}{(x + 3)^{2}} + \frac{36}{(x + 3)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-72x}{(x + 3)^{2}} + \frac{36}{(x + 3)^{2}}\right)}{dx}\\=&-72(\frac{-2(1 + 0)}{(x + 3)^{3}})x - \frac{72}{(x + 3)^{2}} + 36(\frac{-2(1 + 0)}{(x + 3)^{3}})\\=&\frac{144x}{(x + 3)^{3}} - \frac{72}{(x + 3)^{3}} - \frac{72}{(x + 3)^{2}}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{144x}{(x + 3)^{3}} - \frac{72}{(x + 3)^{3}} - \frac{72}{(x + 3)^{2}}\right)}{dx}\\=&144(\frac{-3(1 + 0)}{(x + 3)^{4}})x + \frac{144}{(x + 3)^{3}} - 72(\frac{-3(1 + 0)}{(x + 3)^{4}}) - 72(\frac{-2(1 + 0)}{(x + 3)^{3}})\\=&\frac{-432x}{(x + 3)^{4}} + \frac{216}{(x + 3)^{4}} + \frac{288}{(x + 3)^{3}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!