本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{(1 + {(sin(3)x)}^{2})}^{4} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = x^{8}sin^{8}(3) + 4x^{6}sin^{6}(3) + 6x^{4}sin^{4}(3) + 4x^{2}sin^{2}(3) + 1\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( x^{8}sin^{8}(3) + 4x^{6}sin^{6}(3) + 6x^{4}sin^{4}(3) + 4x^{2}sin^{2}(3) + 1\right)}{dx}\\=&8x^{7}sin^{8}(3) + x^{8}*8sin^{7}(3)cos(3)*0 + 4*6x^{5}sin^{6}(3) + 4x^{6}*6sin^{5}(3)cos(3)*0 + 6*4x^{3}sin^{4}(3) + 6x^{4}*4sin^{3}(3)cos(3)*0 + 4*2xsin^{2}(3) + 4x^{2}*2sin(3)cos(3)*0 + 0\\=&8x^{7}sin^{8}(3) + 24x^{5}sin^{6}(3) + 24x^{3}sin^{4}(3) + 8xsin^{2}(3)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!