本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{e}^{(\frac{-{(x - a)}^{2}}{(2{b}^{2})})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {e}^{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {e}^{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})}\right)}{dx}\\=&({e}^{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})}((\frac{\frac{-1}{2}*2x}{b^{2}} + \frac{a}{b^{2}} + 0)ln(e) + \frac{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})(0)}{(e)}))\\=&\frac{-x{e}^{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})}}{b^{2}} + \frac{a{e}^{(\frac{\frac{-1}{2}x^{2}}{b^{2}} + \frac{ax}{b^{2}} - \frac{\frac{1}{2}a^{2}}{b^{2}})}}{b^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!