本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数135e^{\frac{-109}{5}x}(cos(\frac{1601}{5}x) + \frac{1}{10}sin(\frac{1601}{5}x)) - 135sin(100πx - \frac{2}{5}π) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 135e^{\frac{-109}{5}x}cos(\frac{1601}{5}x) + \frac{27}{2}e^{\frac{-109}{5}x}sin(\frac{1601}{5}x) - 135sin(100πx - \frac{2}{5}π)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 135e^{\frac{-109}{5}x}cos(\frac{1601}{5}x) + \frac{27}{2}e^{\frac{-109}{5}x}sin(\frac{1601}{5}x) - 135sin(100πx - \frac{2}{5}π)\right)}{dx}\\=&135e^{\frac{-109}{5}x}*\frac{-109}{5}cos(\frac{1601}{5}x) + 135e^{\frac{-109}{5}x}*-sin(\frac{1601}{5}x)*\frac{1601}{5} + \frac{27}{2}e^{\frac{-109}{5}x}*\frac{-109}{5}sin(\frac{1601}{5}x) + \frac{27}{2}e^{\frac{-109}{5}x}cos(\frac{1601}{5}x)*\frac{1601}{5} - 135cos(100πx - \frac{2}{5}π)(100π + 0)\\=&\frac{13797e^{\frac{-109}{5}x}cos(\frac{1601}{5}x)}{10} - \frac{435213e^{\frac{-109}{5}x}sin(\frac{1601}{5}x)}{10} - 13500πcos(100πx - \frac{2}{5}π)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!