本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数-135e^{\frac{-109}{5}x}(\frac{1}{10}cos(\frac{1601}{5}x) - sin(\frac{1601}{5}x)) + 135sin(100πx - \frac{2}{5}π) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{-27}{2}e^{\frac{-109}{5}x}cos(\frac{1601}{5}x) + 135e^{\frac{-109}{5}x}sin(\frac{1601}{5}x) + 135sin(100πx - \frac{2}{5}π)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{-27}{2}e^{\frac{-109}{5}x}cos(\frac{1601}{5}x) + 135e^{\frac{-109}{5}x}sin(\frac{1601}{5}x) + 135sin(100πx - \frac{2}{5}π)\right)}{dx}\\=&\frac{-27}{2}e^{\frac{-109}{5}x}*\frac{-109}{5}cos(\frac{1601}{5}x) - \frac{27}{2}e^{\frac{-109}{5}x}*-sin(\frac{1601}{5}x)*\frac{1601}{5} + 135e^{\frac{-109}{5}x}*\frac{-109}{5}sin(\frac{1601}{5}x) + 135e^{\frac{-109}{5}x}cos(\frac{1601}{5}x)*\frac{1601}{5} + 135cos(100πx - \frac{2}{5}π)(100π + 0)\\=&\frac{435213e^{\frac{-109}{5}x}cos(\frac{1601}{5}x)}{10} + \frac{13797e^{\frac{-109}{5}x}sin(\frac{1601}{5}x)}{10} + 13500πcos(100πx - \frac{2}{5}π)\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!