本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数e^{-139.34411 + \frac{1.575701 * {10}^{5}}{x} - \frac{6.642308 * {10}^{7}}{({x}^{2})} + \frac{1.2438 * {10}^{10}}{({x}^{3})} - \frac{8.621949 * {10}^{11}}{({x}^{4})}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}\right)}{dx}\\=&e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}(\frac{15.75701*-1}{x^{2}} - \frac{66.42308*-1}{x^{2}} + \frac{12.438*-1}{x^{2}} - \frac{86.21949*-1}{x^{2}} + 0)\\=&\frac{-15.75701e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} + \frac{66.42308e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} - \frac{12.438e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}} + \frac{86.21949e^{\frac{15.75701}{x} - \frac{66.42308}{x} + \frac{12.438}{x} - \frac{86.21949}{x} - 139.34411}}{x^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!