本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(4{x}^{2} + 4x + 1)}{(x + {sin(x)}^{2})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{4x^{2}}{(x + sin^{2}(x))} + \frac{4x}{(x + sin^{2}(x))} + \frac{1}{(x + sin^{2}(x))}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{4x^{2}}{(x + sin^{2}(x))} + \frac{4x}{(x + sin^{2}(x))} + \frac{1}{(x + sin^{2}(x))}\right)}{dx}\\=&4(\frac{-(1 + 2sin(x)cos(x))}{(x + sin^{2}(x))^{2}})x^{2} + \frac{4*2x}{(x + sin^{2}(x))} + 4(\frac{-(1 + 2sin(x)cos(x))}{(x + sin^{2}(x))^{2}})x + \frac{4}{(x + sin^{2}(x))} + (\frac{-(1 + 2sin(x)cos(x))}{(x + sin^{2}(x))^{2}})\\=&\frac{-8x^{2}sin(x)cos(x)}{(x + sin^{2}(x))^{2}} - \frac{8xsin(x)cos(x)}{(x + sin^{2}(x))^{2}} + \frac{8x}{(x + sin^{2}(x))} - \frac{4x^{2}}{(x + sin^{2}(x))^{2}} - \frac{4x}{(x + sin^{2}(x))^{2}} - \frac{2sin(x)cos(x)}{(x + sin^{2}(x))^{2}} + \frac{4}{(x + sin^{2}(x))} - \frac{1}{(x + sin^{2}(x))^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!