本次共计算 1 个题目:每一题对 x 求 2 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(1 + 2x)}^{1}}{(1 + x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{2x}{(x + 1)} + \frac{1}{(x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{2x}{(x + 1)} + \frac{1}{(x + 1)}\right)}{dx}\\=&2(\frac{-(1 + 0)}{(x + 1)^{2}})x + \frac{2}{(x + 1)} + (\frac{-(1 + 0)}{(x + 1)^{2}})\\=& - \frac{2x}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} + \frac{2}{(x + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( - \frac{2x}{(x + 1)^{2}} - \frac{1}{(x + 1)^{2}} + \frac{2}{(x + 1)}\right)}{dx}\\=& - 2(\frac{-2(1 + 0)}{(x + 1)^{3}})x - \frac{2}{(x + 1)^{2}} - (\frac{-2(1 + 0)}{(x + 1)^{3}}) + 2(\frac{-(1 + 0)}{(x + 1)^{2}})\\=&\frac{4x}{(x + 1)^{3}} + \frac{2}{(x + 1)^{3}} - \frac{4}{(x + 1)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!