本次共计算 1 个题目:每一题对 r 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数(-PA{r}^{3} + (PA + C){r}^{3} - (C + 2mn{P}^{2}A)r){\frac{1}{(2rPA - C)}}^{2} 关于 r 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{Cr^{3}}{(2PAr - C)^{2}} - \frac{Cr}{(2PAr - C)^{2}} - \frac{2P^{2}Amnr}{(2PAr - C)^{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{Cr^{3}}{(2PAr - C)^{2}} - \frac{Cr}{(2PAr - C)^{2}} - \frac{2P^{2}Amnr}{(2PAr - C)^{2}}\right)}{dr}\\=&(\frac{-2(2PA + 0)}{(2PAr - C)^{3}})Cr^{3} + \frac{C*3r^{2}}{(2PAr - C)^{2}} - (\frac{-2(2PA + 0)}{(2PAr - C)^{3}})Cr - \frac{C}{(2PAr - C)^{2}} - 2(\frac{-2(2PA + 0)}{(2PAr - C)^{3}})P^{2}Amnr - \frac{2P^{2}Amn}{(2PAr - C)^{2}}\\=& - \frac{4PACr^{3}}{(2PAr - C)^{3}} + \frac{3Cr^{2}}{(2PAr - C)^{2}} + \frac{4PACr}{(2PAr - C)^{3}} - \frac{C}{(2PAr - C)^{2}} + \frac{8P^{3}A^{2}mnr}{(2PAr - C)^{3}} - \frac{2P^{2}Amn}{(2PAr - C)^{2}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!