本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数\frac{(1 + \frac{1}{2}x)}{(1 - \frac{1}{2}x)} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{1}{2}x}{(\frac{-1}{2}x + 1)} + \frac{1}{(\frac{-1}{2}x + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{1}{2}x}{(\frac{-1}{2}x + 1)} + \frac{1}{(\frac{-1}{2}x + 1)}\right)}{dx}\\=&\frac{1}{2}(\frac{-(\frac{-1}{2} + 0)}{(\frac{-1}{2}x + 1)^{2}})x + \frac{\frac{1}{2}}{(\frac{-1}{2}x + 1)} + (\frac{-(\frac{-1}{2} + 0)}{(\frac{-1}{2}x + 1)^{2}})\\=&\frac{x}{4(\frac{-1}{2}x + 1)^{2}} + \frac{1}{2(\frac{-1}{2}x + 1)^{2}} + \frac{1}{2(\frac{-1}{2}x + 1)}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!