本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({(ax - by)}^{2} + {(cx + dy)}^{2})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(a^{2}*2x - 2aby + 0 + c^{2}*2x + 2ycd + 0)}{(a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}})\\=&\frac{a^{2}x}{(a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}} - \frac{aby}{(a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}} + \frac{c^{2}x}{(a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}} + \frac{ycd}{(a^{2}x^{2} - 2abyx + b^{2}y^{2} + c^{2}x^{2} + 2ycdx + y^{2}d^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!