本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数{({(a + b{x}^{2} + c{y}^{2})}^{2} + {(dy)}^{2})}^{\frac{1}{2}} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = (2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( (2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}\right)}{dx}\\=&(\frac{\frac{1}{2}(2ab*2x + 0 + 0 + b^{2}*4x^{3} + 2bcy^{2}*2x + 0 + 0)}{(2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}})\\=&\frac{2abx}{(2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}} + \frac{2b^{2}x^{3}}{(2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}} + \frac{2bcy^{2}x}{(2abx^{2} + 2acy^{2} + a^{2} + b^{2}x^{4} + 2bcy^{2}x^{2} + c^{2}y^{4} + y^{2}d^{2})^{\frac{1}{2}}}\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!